Ньютона метод - определение. Что такое Ньютона метод
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Ньютона метод - определение

ЧИСЛЕННЫЙ МЕТОД РЕШЕНИЯ УРАВНЕНИЙ, ИСПОЛЬЗУЮЩИЙ ВЫЧИСЛЕНИЕ ПРОИЗВОДНОЙ
Метод касательной; Метод касательных; Метод Ньютона-Рафсона; Алгоритм Ньютона; Метод Ньютона — Рафсона; Метод Гаусса — Ньютона; Ньютона метод
  • Иллюстрация расхождения метода Ньютона, применённого к функции <math>\scriptstyle{f(x)=x^3-2x+2}</math> с начальным приближением в точке <math>\scriptstyle{x_0=0}</math>.
  • График сходимости.
  • График последовательных приближений.
  • График производной функции <math>\scriptstyle{f(x)=x+x^2\sin(2/x)}</math> при приближении <math>\scriptstyle{x}</math> к нулю справа.
  • Иллюстрация метода Ньютона (синим изображена функция <math>\scriptstyle{f(x)}</math>, ноль которой необходимо найти, красным — касательная в точке очередного приближения <math>\scriptstyle{x_n}</math>). Здесь мы можем увидеть, что последующее приближение <math>\scriptstyle{x_{n+1}}</math> лучше предыдущего <math>\scriptstyle{x_n}</math>.
  • Иллюстрация последовательных приближений метода одной касательной, применённого к функции <math>\scriptstyle{f(x)=e^x-2}</math> с начальным приближением в точке <math>\scriptstyle{x_0=1{,}8}</math>.
  • [[Бассейны Ньютона]] для полинома пятой степени <math>\scriptstyle{p(x)=x^5-1}</math>. Разными цветами закрашены области притяжения для разных корней. Более тёмные области соответствуют большему числу итераций.
Найдено результатов: 605
Ньютона метод         

метод приближённого нахождения корня x0 уравнения f (x) = 0, называемый также методом касательных. Н. м. состоит в том, что по исходному ("первому") приближению х = a1 находят второе (более точное), проводя касательную к графику (см. рис.) у = f (x) в точке А [а1 f (a1)] до её пересечения с осью Ox; точка пересечения х = a1 - f (a1)/f'(a1) и принимается за новое значение a2. корня. Повторяя в случае необходимости этот процесс, получают всё более и более точные приближения a2, a3,... корня x0 при условии, что производная f'(x) монотонна и сохраняет знак на сегменте, содержащем x0. Ошибка ε2 = x0 -a2 нового значения a2 связана со старой ошибкой ε1 = x0 - a1 формулой , где - значение второй производной функции f (x) в некоторой точке x, лежащей между x0 и a1. Иногда рекомендуется Н. м. применять одновременно с к.-л. другим способом, например с Линейного интерполирования методом. Н. м. допускает обобщения, которые позволяют применять его для решения уравнений F (x) = 0 в нормированных пространствах (F- оператор в этом пространстве), в частности для решения систем уравнений и функциональных уравнений. Метод разработан И. Ньютоном в 1669.

Рис. к ст. Ньютона метод.

Метод Ньютона         
Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требует
Колыбель Ньютона         
  • При отклонениях различного количества шариков
МЕХАНИЧЕСКАЯ СИСТЕМА ДЛЯ ДЕМОНСТРАЦИИ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ РАЗЛИЧНЫХ ВИДОВ ДРУГ В ДРУГА
Маятник ньютона; Шарики Ньютона; Маятник Ньютона
Колыбе́ль Ньютона (маятник Ньютона) — названная в честь Исаака Ньютона механическая система, предназначенная для демонстрации преобразования энергии различных видов друг в друга: кинетической в потенциальную и наоборот. В отсутствие противодействующих сил (трения) система могла бы действовать вечно, но в реальности это недостижимо.
Ньютона кольца         
  • Образование тёмных и светлых интерференционных полос в клиновидном воздушном зазоре между двумя стеклянными пластинами. Зазор между поверхностями и [[длина волны]] световых волн для наглядности сильно преувеличены.
КОЛЬЦЕОБРАЗНЫЕ ИНТЕРФЕРЕНЦИОННЫЕ МАКСИМУМЫ И МИНИМУМЫ, ПОЯВЛЯЮЩИЕСЯ ВОКРУГ ТОЧКИ КАСАНИЯ СЛЕГКА ИЗОГНУТОЙ ВЫПУКЛОЙ ЛИНЗЫ И ПЛОСКОПАРАЛЛ
Ньютона кольца

интерференционные Полосы равной толщины в форме колец, расположенные концентрически вокруг точки касания двух поверхностей (двух сфер, плоскости и сферы и т.д.). Впервые описаны в 1675 И. Ньютоном. Интерференция света происходит в тонком зазоре (обычно воздушном), разделяющем соприкасающиеся тела; этот зазор играет роль тонкой плёнки, см. Оптика тонких слоев (См. Оптика тонких слоёв). Н. к. наблюдаются и в проходящем и - более отчётливо - в отражённом свете. При освещении монохроматическим светом (См. Монохроматический свет) длины волны Л, Н. к. представляют собой чередующиеся тёмные и светлые полосы. Светлые возникают в местах, где зазор вносит Разность хода между прямым и дважды отражённым лучом (в проходящем свете) или между лучами, отражёнными от обеих соприкасающихся поверхностей (в отражённом свете), равную целому числу λ. Тёмные кольца образуются там, где разность хода лучей равна целому нечётному числу λ/2. Разность хода определяется оптической длиной пути (См. Оптическая длина пути) луча в зазоре и изменением фазы световой волны при отражении (см. Отражение света). Так, при отражении от границы воздух - стекло фаза меняется на π, а при отражении от границы стекло - воздух остаётся неизменной. Поэтому в случае двух стеклянных поверхностей т-е тёмное Н. к. в отражённом свете соответствует разности хода (т. е. толщине зазора dm = mλ/2), где m - целое число. При касании сферы и плоскости (рис. 1) rm = (mλR)1/2. По теореме Пифагора, для треугольников с катетами rп и rm R2 = (R - λm/2)2 + rn2 и R2 = (R - λm/2)2 + r2m, откуда следует - в пренебрежении очень малыми членами (/2)2 и (/2)2 и др.- часто используемая формула для Н. к.: R = (rn2 - r2m)/λ(n - m). Эти соотношения позволяют с хорошей точностью определять λ по измеренным rm и rп либо, если λ известна, измерять радиусы поверхностей линз (рис. 2). Н. к. используются также для контроля правильности формы сферических и плоских поверхностей (рис. 3). При освещении немонохроматическим (например, белым) светом Н. к. становятся цветными, причём чередование цветов в них существенно отличается от обычного радужного из-за переналожения систем колец, соответствующих разным т. Наиболее отчётливо Н. к. наблюдаются при использовании сферических поверхностей малых радиусов кривизны (толщина зазора мала на большем расстоянии от точки касания).

Лит.: Шишловский А. А., Прикладная физическая оптика, М., 1961; Дитчберн Р., Физическая оптика, пер. с англ., М., 1965.

А. П. Гагарин.

Рис. 1. К выводу соотношения между радиусами rm колец Ньютона в отражённом свете, радиусом R сферической линзы и длиной волны λ освещающего монохроматического света. О - точка касания сферы и плоскости; АА' = δm - толщина воздушного зазора в области образования m-го тёмного кольца. Применяя теорему Пифагора к прямоугольному треугольнику, малый катет (равный rm) которого составляет перпендикуляр, опущенный из A' на СО, получим rm = R2 - (R - δm)2 ≈ 2Rδm, откуда условие δm = λm/2 даёт .

Рис. 2. Фотография колец Ньютона в отражённом свете.

Рис. 3. Кольца Ньютона, полученные с посеребрёнными поверхностями. Извилины полос выявляют дефекты поверхностей.

НЬЮТОНА КОЛЬЦА         
  • Образование тёмных и светлых интерференционных полос в клиновидном воздушном зазоре между двумя стеклянными пластинами. Зазор между поверхностями и [[длина волны]] световых волн для наглядности сильно преувеличены.
КОЛЬЦЕОБРАЗНЫЕ ИНТЕРФЕРЕНЦИОННЫЕ МАКСИМУМЫ И МИНИМУМЫ, ПОЯВЛЯЮЩИЕСЯ ВОКРУГ ТОЧКИ КАСАНИЯ СЛЕГКА ИЗОГНУТОЙ ВЫПУКЛОЙ ЛИНЗЫ И ПЛОСКОПАРАЛЛ
Ньютона кольца
чередующиеся светлые и темные кольца, наблюдающиеся при освещении монохроматическим светом, вокруг точки соприкосновения сферических поверхностей двух линз или выпуклой сферической линзы с плоской пластинкой. Возникают вследствие интерференции света в тонком воздушном промежутке (см. Оптика тонких слоев). Впервые наблюдались И. Ньютоном в 1675.
Кольца Ньютона         
  • Образование тёмных и светлых интерференционных полос в клиновидном воздушном зазоре между двумя стеклянными пластинами. Зазор между поверхностями и [[длина волны]] световых волн для наглядности сильно преувеличены.
КОЛЬЦЕОБРАЗНЫЕ ИНТЕРФЕРЕНЦИОННЫЕ МАКСИМУМЫ И МИНИМУМЫ, ПОЯВЛЯЮЩИЕСЯ ВОКРУГ ТОЧКИ КАСАНИЯ СЛЕГКА ИЗОГНУТОЙ ВЫПУКЛОЙ ЛИНЗЫ И ПЛОСКОПАРАЛЛ
Ньютона кольца
Ко́льца Нью́тона — кольцеобразные интерференционные максимумы и минимумы, появляющиеся вокруг точки касания выпуклой линзы и плоскопараллельной пластины при прохождении света сквозь линзу и пластину. Впервые были описаны в 1675 году И.
Медаль Исаака Ньютона         
Медаль Ньютона
Медаль Исаака Ньютона () — международная награда в области физики, ежегодно с 2008 года присуждаемая британским Институтом физики.
Ньютона законы механики         
  • Страница «Начал» Ньютона с аксиомами механики
ТРИ ОСНОВНЫЕ АКСИОМЫ КЛАССИЧЕСКОЙ МЕХАНИКИ
Ньютоновские уравнения; Ньютона законы механики; Законы механики Ньютона; Закон действия и противодействия; 3-й закон Ньютона

три закона, лежащие в основе т. н. классической механики (См. Механика). Сформулированы И. Ньютоном (1687). Первый закон: "Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние". Второй закон: "Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует". Третий закон: "Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собой равны и направлены в противоположные стороны".

Н. з. м. появились как результат обобщения многочисленных наблюдений, опытов и теоретических исследований Г. Галилея, Х. Гюйгенса, самого Ньютона и др.

Согласно современным представлениям и терминологии, в первом и втором законах под телом следует понимать материальную точку (См. Материальная точка), а под движением - движение относительно инерциальной системы отсчёта (См. Инерциальная система отсчёта). Математическое выражение второго закона в классической механике имеет вид: или mω = F, где m - масса точки, υ - её скорость, a ω - ускорение, F - действующая сила (см. Динамика).

Н. з. м. перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света. См. Квантовая механика, Относительности теория.

Лит.: Галилей Г., Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению. Соч., [пер. с лат.], т. 1, М. - Л., 1934; Ньютон И., Математические начала натуральной философии, пер. с лат., в кн.: Крылов А. Н., Собр. трудов, т. 7, М. - Л., 1936, См. также лит. при ст. Механика.

С. М. Тарг.

Законы Ньютона         
  • Страница «Начал» Ньютона с аксиомами механики
ТРИ ОСНОВНЫЕ АКСИОМЫ КЛАССИЧЕСКОЙ МЕХАНИКИ
Ньютоновские уравнения; Ньютона законы механики; Законы механики Ньютона; Закон действия и противодействия; 3-й закон Ньютона
Зако́ны Нью́то́на — три важнейших закона классической механики, которые позволяют записать уравнения движения для любой механической системы, если известны силы, действующие на составляющие её тела. Впервые в полной мере сформулированы Исааком Ньютоном в книге «Математические начала натуральной философии» (1687 год).
Метод (программирование)         
В ПРОГРАММИРОВАНИИ - ФУНКЦИЯ ИЛИ ПРОЦЕДУРА, СВЯЗАННАЯ С КЛАССОМ
Метод (объектно-ориентированное программирование); Метод (языки программирования); Функция-член
Ме́тод в объектно-ориентированном программировании — это функция или процедура, принадлежащаяПод принадлежностью подразумевается, что метод явно ассоциирован с обработкой определённого класса объектов.

Википедия

Метод Ньютона

Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован для решения задач оптимизации, в которых требуется определить ноль первой производной либо градиента в случае многомерного пространства.